The cancer risk among exposed workers in the nuclear center in Świerk, Poland

Krzysztof Wojciech Fornalski
PGE Nuclear Energy
National Centre for Nuclear Research
Nuclear center in Świerk, Poland
Nuclear center in Świerk, Poland

built in 1956
Nuclear workers in Świerk

- data from 1956 to 2001
 - 10 years of cancer incubation time
- dosimetric data of 4606 workers
 - effective doses
 - equivalent doses to hands
- dosimetric and medical data of 575 workers
 - information about cancer status
Cancers

- In the medical cohort (575 workers) there are 47 cancer cases.
- In the group of 47 cancer workers there are 21 people who received ≥ 0.5 mSv.
- The average cumulative dose per worker is 34 mSv (effective dose) and 17 mSv (equivalent dose to hands).
Results – odds ratio

- **taking effective doses only:**
 \[\text{OR} = 0.90 \ (0.62-1.18, \ 68\% \ CI) \]

- **taking both effective and equivalent to hands doses:**
 \[\text{OR} = 0.94 \ (0.65-1.23, \ 68\% \ CI) \]

- **statistically nonsignificant decrease** of cancer incidences by \((10.4 \pm 27.6)\%\) and \((6.0 \pm 28.8)\%\) respectively
Results – lack of cancers

- no cancer case is detected among 52 workers who received maximal cumulative doses (from 35 mSv to 653 mSv)
- no cancer case is detected among 43 workers who were chronically irradiated during more than 12 years (max. 26 years)
The graph represents the number of workers exposed to chronic irradiation (≥ 0.5 mSv) and their corresponding number of cancers. The x-axis indicates different ranges of chronic irradiation years, while the y-axis shows the number of workers. The diagram is divided into two sections: gray for cancers and black for no cancers.
Thank you!

krzysztof.fornalski@gmail.com
Adjustment for sex

- **Adjusted Odds Ratio**
 - taking effective doses only:
 \[\text{AOR} = 0.86 \ (0.58-1.14, \ 68\% \ CI) \]
 - taking both effective and equivalent to hands doses:
 \[\text{AOR} = 0.97 \ (0.65-1.29, \ 68\% \ CI) \]
 - among workers who received \(\geq 0.5 \text{ mSv} \)
Comparing with external population

- for irradiated group (≥ 0.5 mSv):
 \[\text{SIR} = (32.2 \pm 8.3)\% \]
- for non-irradiated group (controls):
 \[\text{SIR} = (34.3 \pm 8.1)\% \]
- External population: SIR = 100%
- No healthy worker effect (?)
Table 4: Final results of the analysis as OR (odds ratio) with different criteria of dose sensitivity threshold and a type of dose. The uncertainties show one standard deviation (68% CI). The last column presents the average cumulative dose per worker.

<table>
<thead>
<tr>
<th>The dose sensitivity threshold (the definition of significant dose)</th>
<th>OR (odds ratio of cancer incidence)</th>
<th>Average cumulative dose [mSv]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dose sensitivity threshold for effective dose or equivalent dose to hands</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5 mSv(^a, b)</td>
<td>0.94 (0.65-1.23)(^b)</td>
<td>33.3 (body)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17.3 (hands)</td>
</tr>
<tr>
<td>1 mSv</td>
<td>0.90 (0.62-1.19)</td>
<td>37.7 (body)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19.7 (hands)</td>
</tr>
<tr>
<td>5 mSv</td>
<td>0.94 (0.61-1.27)</td>
<td>56.3 (body)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>29.8 (hands)</td>
</tr>
<tr>
<td>10 mSv</td>
<td>0.82 (0.48-1.15)</td>
<td>73.1 (body)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>39.5 (hands)</td>
</tr>
<tr>
<td>Dose sensitivity threshold for effective dose only (^c)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5 mSv(^a)</td>
<td>0.90 (0.62-1.18)</td>
<td>34.0 (body)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[17.6 (hands)]</td>
</tr>
<tr>
<td>1 mSv</td>
<td>0.86 (0.59-1.14)</td>
<td>38.9 (body)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[20.1 (hands)]</td>
</tr>
<tr>
<td>5 mSv</td>
<td>0.87 (0.55-1.19)</td>
<td>58.1 (body)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[29.8 (hands)]</td>
</tr>
<tr>
<td>10 mSv</td>
<td>0.60 (0.33-0.88)</td>
<td>76.3 (body)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[39.8 (hands)]</td>
</tr>
</tbody>
</table>

\(^a\) - the threshold of dose sensitivity (0.5 mSv) is taken as a default one in the presented paper.

\(^b\) – this case was precisely described in table 3.